Tutorial Details
Table of Contents
Basic guides And Resources
PYTHON FOUNDATIONAL MATERIAL TUTORIAL
- Module 1: Introduction to Python
- Module 2: Variables and Data Types
- Module 3: Control Flow
- Module 4: Functions
- Module 5: Data Structures
- Module 6: File Handling
- Module 7: Error and Exception Handling
- Module 8: Object-Oriented Programming (OOP)
- Module 9: Modules and Libraries
- Module 10: Regular Expressions
- Module 11: Data Analysis
- Module 12: Web Scraping
- Module 13: Automation
- Module 14: Introduction to Flask
- Module 15: Introduction to Django
- Module 16: Working with APIs
- Module 17: Testing in Python
- Module 18: Data Visualization
- Module 19: Machine Learning Basics
- Module 20: Build a Real-World Application
Module 1: Introduction to Python
1. What is Python?
Python is a high-level, interpreted programming language known for its simplicity and versatility. It is widely used in areas such as:
- Web Development
- Data Science and Machine Learning
- Scripting and Automation
- Game Development
- Scientific Computing
Key Features:
- Easy to Learn and Read: Python has an intuitive syntax that resembles natural language.
- Cross-Platform: Python can run on Windows, macOS, and Linux.
- Extensive Libraries: Python includes libraries for web development (
Flask
,Django
), data analysis (pandas
,numpy
), and more. - Open Source: Python is free and community-driven.
2. Setting Up Python
A. Installing Python
Visit python.org and download the latest version of Python.
During installation:
- Check the option “Add Python to PATH”.
- Proceed with the installation and verify it.
Verify the installation:
python --version
or
python3 --version
B. Setting Up an IDE
Choose an IDE for Python development. Here are the most popular options:
1. Visual Studio Code
- Lightweight and highly customizable.
- Extensions like Python (Microsoft) enhance the coding experience.
- Installation:
- Download from VS Code.
- Install the Python extension from the Extensions Marketplace.
- Running Code:
- Open a
.py
file. - Click Run or press
Ctrl+Shift+P
and type “Run Python File”.
- Open a
2. PyCharm
- A feature-rich IDE for Python, available in both Community (free) and Professional (paid) editions.
- Download from JetBrains PyCharm.
- Create a Python project and start coding.
3. Jupyter Notebook
- Ideal for interactive computing and data science.
- Install using pip:
pip install notebook
- Start Jupyter Notebook:
jupyter notebook
C. Running Python in a Text Editor
You can also use basic editors like Notepad++ or Sublime Text, but IDEs are recommended for beginners.
3. Running Your First Python Script
A. Using the Python Interactive Shell
- Open your terminal or command prompt.
- Type:
python
- Run the command:
Output:print("Hello, World!")
Hello, World!
B. Writing a Script
Create a new file called
hello.py
:print("Hello, World!")
Run the script in your terminal:
python hello.py
C. Running Code in an IDE
In IDEs like VS Code or PyCharm:
- Open the
hello.py
file. - Click the Run button or press the shortcut (
F5
in VS Code).
4. Python Syntax and Indentation
Python relies heavily on indentation to define code blocks instead of curly braces ({}
) like other languages.
A. Basic Syntax
Case Sensitivity:
- Variable names are case-sensitive:
age = 25 Age = 30 # This is a different variable
- Variable names are case-sensitive:
Statements:
- Each statement is typically written on a new line:
x = 5 y = 10 print(x + y)
- Each statement is typically written on a new line:
Comments:
- Single-line comments:
# This is a comment print("Hello, World!") # Inline comment
- Multi-line comments (using triple quotes):
""" This is a multi-line comment. """
- Single-line comments:
B. Indentation
Indentation is mandatory in Python and is used to define blocks of code.
Example: If-Else Block
x = 10
if x > 5:
print("x is greater than 5")
else:
print("x is 5 or less")
- Correct: Use consistent spaces (typically 4 spaces per indentation level).
- Incorrect:
x = 10 if x > 5: print("x is greater than 5") else: print("This will throw an error") # IndentationError
C. Code Example: Basic Syntax
# Define variables
name = "Alice"
age = 25
# Print a formatted string
print(f"My name is {name} and I am {age} years old.")
# Conditional statement
if age > 18:
print("You are an adult.")
else:
print("You are a minor.")
# Loop through a range
for i in range(1, 6):
print(f"Number: {i}")
5. Practical Exercises
Exercise 1: Print Statements
- Write a script to display:
print("Welcome to Python!") print("Python is fun!")
- Write a script to display:
Exercise 2: Indentation
- Fix the following code:
x = 15 if x > 10: print("Greater than 10") else: print("10 or less")
- Fix the following code:
Exercise 3: Create a Simple Script
- Write a Python script to take user input and display:
name = input("Enter your name: ") print(f"Hello, {name}!")
- Write a Python script to take user input and display:
6. Summary
Key Takeaways:
- Python is a beginner-friendly programming language used for a variety of purposes.
- Setting up Python involves installing Python and selecting an IDE like VS Code, PyCharm, or Jupyter Notebook.
- Running Python code can be done interactively, via scripts, or using an IDE.
- Python uses indentation to define code blocks, which is crucial for error-free execution.
Module 2: Variables and Data Types
1. Variables and Constants
A. What are Variables?
- Variables are containers for storing data.
- You can think of them as labels assigned to values in memory.
- Python does not require specifying the type of the variable; it determines it automatically based on the value assigned.
Syntax
variable_name = value
Example
# Assigning values to variables
name = "Alice"
age = 25
height = 5.4
is_student = True
# Printing variable values
print(name) # Output: Alice
print(age) # Output: 25
print(height) # Output: 5.4
print(is_student) # Output: True
B. Constants
- Constants are variables whose values should not change during the program.
- Python does not have built-in support for constants but by convention, we use UPPERCASE variable names to represent constants.
Example
PI = 3.14159
GRAVITY = 9.8
# Printing constants
print(PI) # Output: 3.14159
print(GRAVITY) # Output: 9.8
2. Data Types
Python has several built-in data types to work with.
A. Core Data Types
- String (
str
):- A sequence of characters enclosed in quotes.
- Example:
"Hello"
,'Python'
.
- Integer (
int
):- Whole numbers (positive or negative).
- Example:
10
,-5
.
- Float (
float
):- Numbers with decimals.
- Example:
3.14
,-2.5
.
- Boolean (
bool
):- Represents
True
orFalse
.
- Represents
B. Checking the Type of a Variable
You can use the type()
function to check the data type of a variable.
Example
name = "Alice"
age = 25
height = 5.4
is_student = True
print(type(name)) # Output: <class 'str'>
print(type(age)) # Output: <class 'int'>
print(type(height)) # Output: <class 'float'>
print(type(is_student)) # Output: <class 'bool'>
3. Type Conversion
Sometimes you need to convert one data type to another. Python provides built-in functions for this.
A. Common Type Conversion Functions
int()
: Converts to an integer.float()
: Converts to a float.str()
: Converts to a string.
Example
# Convert string to integer
num_str = "25"
num_int = int(num_str)
print(num_int) # Output: 25
print(type(num_int)) # Output: <class 'int'>
# Convert integer to float
num_float = float(num_int)
print(num_float) # Output: 25.0
print(type(num_float)) # Output: <class 'float'>
# Convert float to string
float_str = str(num_float)
print(float_str) # Output: '25.0'
print(type(float_str)) # Output: <class 'str'>
B. Automatic Type Conversion
Python automatically converts types during operations (type coercion).
x = 10 # int
y = 3.5 # float
z = x + y
print(z) # Output: 13.5
print(type(z)) # Output: <class 'float'>
4. Input and Output
A. Input (input()
)
- Used to take user input.
- Always returns a string, so you may need to convert it to the desired data type.
Example
# Taking user input
name = input("Enter your name: ")
age = int(input("Enter your age: "))
height = float(input("Enter your height: "))
print(f"Name: {name}, Age: {age}, Height: {height}")
B. Output (print()
)
- Used to display information to the user.
- Accepts multiple arguments separated by commas.
- Supports formatting strings using
f-strings
orformat()
.
Example
# Simple print
print("Hello, World!")
# Print multiple values
name = "Alice"
age = 25
print("Name:", name, "Age:", age)
# Using f-strings for formatted output
print(f"My name is {name} and I am {age} years old.")
5. Practical Exercises
Exercise 1: Variable Assignment
- Create variables for:
- Your name.
- Your age.
- Your favorite number.
- Print them using
print()
.
Solution
name = "Alice"
age = 25
favorite_number = 7
print(f"Name: {name}, Age: {age}, Favorite Number: {favorite_number}")
Exercise 2: Type Conversion
- Write a program to:
- Take an integer input.
- Convert it to a float and print.
- Convert it to a string and print.
Solution
num = int(input("Enter an integer: "))
print(f"As float: {float(num)}")
print(f"As string: {str(num)}")
Exercise 3: Simple Calculator
- Write a program to:
- Take two numbers as input.
- Perform addition, subtraction, multiplication, and division.
- Print the results.
Solution
num1 = float(input("Enter first number: "))
num2 = float(input("Enter second number: "))
print(f"Addition: {num1 + num2}")
print(f"Subtraction: {num1 - num2}")
print(f"Multiplication: {num1 * num2}")
print(f"Division: {num1 / num2}")
6. Summary
Key Takeaways:
- Variables store data and can hold different types (
int
,float
,str
,bool
). - Constants are not enforced but can be represented by naming conventions.
- Use
int()
,float()
, andstr()
for explicit type conversion. - The
input()
function always returns a string; convert as needed. - The
print()
function is versatile and supports formatted output.
Module 3: Control Flow
Objective: Understand how to control the flow of your Python program using conditional statements, logical operators, loops, and loop control statements. These constructs allow programs to make decisions and repeat tasks efficiently.
1. If-Else Statements
A. Overview
Conditional statements allow your program to make decisions based on conditions.
- if: Executes a block of code if a condition is true.
- else: Executes a block of code if the condition is false.
- elif: Allows multiple conditions to be checked in sequence.
B. Syntax
if condition:
# Code to execute if condition is True
elif another_condition:
# Code to execute if another_condition is True
else:
# Code to execute if all conditions are False
C. Example
age = 20
if age < 18:
print("You are a minor.")
elif age == 18:
print("You just became an adult!")
else:
print("You are an adult.")
2. Logical Operators
A. Overview
Logical operators combine multiple conditions into a single condition:
- and: Returns
True
if both conditions are true. - or: Returns
True
if at least one condition is true. - not: Reverses the result of a condition.
B. Examples
# Using 'and'
age = 25
has_id = True
if age > 18 and has_id:
print("You are allowed to enter.")
# Using 'or'
is_member = False
has_pass = True
if is_member or has_pass:
print("Access granted.")
# Using 'not'
is_logged_in = False
if not is_logged_in:
print("Please log in first.")
3. Loops
A. For Loops
1. Overview
- A
for
loop iterates over a sequence (e.g., list, string, range). - Useful when you know how many iterations are needed.
2. Syntax
for item in sequence:
# Code to execute for each item
3. Example
# Looping through a list
fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
print(f"I like {fruit}")
# Using range()
for i in range(1, 6):
print(f"Number: {i}")
B. While Loops
1. Overview
- A
while
loop repeats a block of code as long as a condition is true. - Useful when the number of iterations is unknown.
2. Syntax
while condition:
# Code to execute while condition is True
3. Example
# Count down from 5
count = 5
while count > 0:
print(f"Countdown: {count}")
count -= 1
print("Liftoff!")
4. Loop Control Statements
A. Overview
Loop control statements modify the behavior of loops:
- break: Exits the loop immediately.
- continue: Skips the current iteration and continues with the next.
- pass: Does nothing (used as a placeholder).
B. Examples
1. Break
# Exit the loop when number equals 3
for number in range(1, 6):
if number == 3:
break
print(number)
Output:
1
2
2. Continue
# Skip printing the number 3
for number in range(1, 6):
if number == 3:
continue
print(number)
Output:
1
2
4
5
3. Pass
# Placeholder in a loop
for number in range(1, 6):
if number == 3:
pass # Do nothing
print(number)
Output:
1
2
3
4
5
5. Practical Exercises
Exercise 1: If-Else
Write a program to check if a number is positive, negative, or zero.
Solution:
number = int(input("Enter a number: "))
if number > 0:
print("The number is positive.")
elif number < 0:
print("The number is negative.")
else:
print("The number is zero.")
Exercise 2: Logical Operators
Write a program to check if a person is eligible to vote (age >= 18) and is a registered voter.
Solution:
age = int(input("Enter your age: "))
is_registered = input("Are you a registered voter? (yes/no): ").lower() == "yes"
if age >= 18 and is_registered:
print("You are eligible to vote.")
else:
print("You are not eligible to vote.")
Exercise 3: For Loop
Write a program to calculate the sum of numbers from 1 to 10.
Solution:
total = 0
for i in range(1, 11):
total += i
print(f"The sum is: {total}")
Exercise 4: While Loop
Write a program to find the factorial of a number using a while
loop.
Solution:
number = int(input("Enter a number: "))
factorial = 1
while number > 0:
factorial *= number
number -= 1
print(f"The factorial is: {factorial}")
Exercise 5: Loop Control
Write a program to print all numbers from 1 to 10, but skip multiples of 3.
Solution:
for i in range(1, 11):
if i % 3 == 0:
continue
print(i)
6. Summary
Key Takeaways:
- If-Else Statements:
- Allow conditional execution of code based on conditions.
- Logical Operators:
- Combine conditions using
and
,or
, andnot
.
- Combine conditions using
- Loops:
for
loops iterate over sequences;while
loops execute until a condition becomes false.
- Loop Control Statements:
- Modify loop behavior with
break
,continue
, andpass
.
- Modify loop behavior with
Module 4: Functions
Objective: Understand how to define and call functions, work with parameters and return values, utilize default and keyword arguments, and manage variable scope in Python programs. Functions help in organizing code, improving reusability, and making programs modular.
1. Defining and Calling Functions
A. Defining Functions
A function is a block of reusable code that performs a specific task. Use the def
keyword to define a function.
Syntax
def function_name(parameters):
# Code block
return value
Example
def greet():
print("Hello, World!")
B. Calling Functions
To call a function, use its name followed by parentheses.
Example
# Defining the function
def greet():
print("Hello, World!")
# Calling the function
greet() # Output: Hello, World!
2. Parameters and Return Values
A. Parameters
Parameters allow you to pass values into a function.
Example
def greet(name):
print(f"Hello, {name}!")
greet("Alice") # Output: Hello, Alice!
greet("Bob") # Output: Hello, Bob!
B. Return Values
A function can return a value using the return
keyword.
Example
def add(a, b):
return a + b
result = add(3, 5)
print(result) # Output: 8
3. Default and Keyword Arguments
A. Default Arguments
Default arguments are used when you want to provide a default value for a parameter.
Example
def greet(name="World"):
print(f"Hello, {name}!")
greet() # Output: Hello, World!
greet("Alice") # Output: Hello, Alice!
B. Keyword Arguments
Keyword arguments allow you to call functions with arguments in a non-positional order by specifying parameter names.
Example
def describe_person(name, age):
print(f"{name} is {age} years old.")
describe_person(age=25, name="Alice") # Output: Alice is 25 years old.
4. Scope (Local vs. Global Variables)
A. Local Variables
- Variables declared inside a function are local to that function.
- They cannot be accessed outside the function.
Example
def greet():
message = "Hello, World!" # Local variable
print(message)
greet() # Output: Hello, World!
# print(message) # Error: message is not defined
B. Global Variables
- Variables declared outside any function are global.
- They can be accessed and modified inside a function using the
global
keyword.
Example
message = "Hello, Global!" # Global variable
def greet():
global message
message = "Hello, Local!"
print(message)
greet() # Output: Hello, Local!
print(message) # Output: Hello, Local!
5. Practical Exercises
Exercise 1: Simple Function
Write a function to calculate the square of a number.
Solution:
def square(num):
return num ** 2
result = square(4)
print(result) # Output: 16
Exercise 2: Function with Default Arguments
Write a function to greet a user with a default name.
Solution:
def greet(name="User"):
print(f"Hello, {name}!")
greet() # Output: Hello, User!
greet("Alice") # Output: Hello, Alice!
Exercise 3: Keyword Arguments
Write a function to display a person’s details.
Solution:
def show_details(name, age, city):
print(f"{name} is {age} years old and lives in {city}.")
show_details(age=30, city="New York", name="Alice")
Exercise 4: Local vs. Global Variables
Write a program to demonstrate the difference between local and global variables.
Solution:
counter = 10 # Global variable
def increment():
global counter
counter += 1 # Modifying global variable
print(f"Inside function: {counter}")
increment() # Output: Inside function: 11
print(counter) # Output: 11
Exercise 5: Return Multiple Values
Write a function to return the sum and product of two numbers.
Solution:
def calculate(a, b):
return a + b, a * b
sum_, product = calculate(3, 5)
print(f"Sum: {sum_}, Product: {product}")
6. Summary
Key Takeaways:
- Defining Functions:
- Use
def
followed by the function name and parentheses.
- Use
- Parameters and Return Values:
- Functions can take input (parameters) and return output (return values).
- Default and Keyword Arguments:
- Default arguments provide fallback values.
- Keyword arguments allow calling with parameter names.
- Scope:
- Local variables are limited to their function, while global variables can be accessed globally.
Module 5: Data Structures
Objective: Learn the foundational data structures in Python, including lists, tuples, sets, and dictionaries. Each data structure serves a unique purpose, and understanding their operations will enhance your ability to solve complex programming problems efficiently.
1. Lists
A. Overview
- A
list
is an ordered, mutable collection of elements. - It can contain elements of different data types (e.g., integers, strings, or even other lists).
B. Creating a List
fruits = ["apple", "banana", "cherry"]
numbers = [1, 2, 3, 4, 5]
mixed = ["text", 42, 3.14, True]
C. Adding Elements
append()
: Adds a single element to the end of the list.extend()
: Adds multiple elements to the list.insert()
: Inserts an element at a specific index.
Examples
fruits = ["apple", "banana"]
fruits.append("cherry")
print(fruits) # Output: ['apple', 'banana', 'cherry']
fruits.extend(["date", "fig"])
print(fruits) # Output: ['apple', 'banana', 'cherry', 'date', 'fig']
fruits.insert(1, "blueberry")
print(fruits) # Output: ['apple', 'blueberry', 'banana', 'cherry', 'date', 'fig']
D. Removing Elements
remove()
: Removes the first occurrence of an element.pop()
: Removes an element at a specific index (or the last element if no index is provided).clear()
: Removes all elements.
Examples
fruits = ["apple", "banana", "cherry", "apple"]
fruits.remove("apple")
print(fruits) # Output: ['banana', 'cherry', 'apple']
fruits.pop(1)
print(fruits) # Output: ['banana', 'apple']
fruits.clear()
print(fruits) # Output: []
E. Slicing
Slicing extracts a portion of the list using the [start:end:step]
syntax.
Examples
numbers = [1, 2, 3, 4, 5, 6]
print(numbers[1:4]) # Output: [2, 3, 4]
print(numbers[:3]) # Output: [1, 2, 3]
print(numbers[::2]) # Output: [1, 3, 5]
F. Iterating
Use a for
loop to iterate over elements.
Example
fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
print(fruit)
2. Tuples
A. Overview
- A
tuple
is an immutable, ordered collection of elements. - Once created, elements cannot be added, removed, or modified.
B. Creating a Tuple
fruits = ("apple", "banana", "cherry")
numbers = (1, 2, 3, 4, 5)
C. Accessing Elements
Tuples support indexing and slicing, just like lists.
Example
print(fruits[1]) # Output: banana
print(numbers[:3]) # Output: (1, 2, 3)
D. Iterating
for fruit in fruits:
print(fruit)
E. Why Use Tuples?
- Tuples are faster than lists.
- They are immutable, making them useful for data that shouldn’t change.
3. Sets
A. Overview
- A
set
is an unordered collection of unique elements. - Elements are not indexed.
B. Creating a Set
fruits = {"apple", "banana", "cherry"}
C. Set Operations
- Union (
|
): Combines all unique elements from two sets. - Intersection (
&
): Returns common elements. - Difference (
-
): Returns elements in one set but not in the other.
Examples
set1 = {1, 2, 3}
set2 = {3, 4, 5}
print(set1 | set2) # Output: {1, 2, 3, 4, 5}
print(set1 & set2) # Output: {3}
print(set1 - set2) # Output: {1, 2}
D. Adding and Removing Elements
add()
: Adds an element.remove()
: Removes an element.
Example
fruits.add("date")
print(fruits) # Output: {'apple', 'banana', 'cherry', 'date'}
fruits.remove("banana")
print(fruits) # Output: {'apple', 'cherry', 'date'}
4. Dictionaries
A. Overview
- A
dictionary
is a collection of key-value pairs. - Keys are unique, and values can be of any type.
B. Creating a Dictionary
person = {"name": "Alice", "age": 25, "city": "New York"}
C. Accessing Elements
Access elements using keys.
Example
print(person["name"]) # Output: Alice
print(person.get("age")) # Output: 25
D. Adding and Updating
person["job"] = "Engineer" # Add
person["age"] = 26 # Update
print(person)
E. Removing Elements
pop(key)
: Removes a specific key.clear()
: Removes all key-value pairs.
Example
person.pop("city")
print(person) # Output: {'name': 'Alice', 'age': 26, 'job': 'Engineer'}
person.clear()
print(person) # Output: {}
F. Iterating
for key, value in person.items():
print(f"{key}: {value}")
5. Practical Exercises
Exercise 1: List Operations
Write a program to:
- Create a list of numbers.
- Add a new number to the list.
- Remove the smallest number.
- Print the sorted list.
Solution:
numbers = [5, 2, 8, 1, 9]
numbers.append(6)
numbers.remove(min(numbers))
print(sorted(numbers))
Exercise 2: Tuple
Create a tuple of fruits and print the second element.
Solution:
fruits = ("apple", "banana", "cherry")
print(fruits[1]) # Output: banana
Exercise 3: Set Operations
Write a program to:
- Create two sets of integers.
- Perform union, intersection, and difference.
Solution:
set1 = {1, 2, 3}
set2 = {3, 4, 5}
print(set1 | set2) # Union
print(set1 & set2) # Intersection
print(set1 - set2) # Difference
Exercise 4: Dictionary
Write a program to:
- Create a dictionary of a person’s details.
- Update the person’s age.
- Print all key-value pairs.
Solution:
person = {"name": "Alice", "age": 25, "city": "New York"}
person["age"] = 26
for key, value in person.items():
print(f"{key}: {value}")
6. Summary
Key Takeaways:
- Lists:
- Ordered, mutable, and allow duplicates.
- Tuples:
- Immutable and ordered.
- Sets:
- Unordered, unique elements, with powerful mathematical operations.
- Dictionaries:
- Key-value pairs for efficient data storage and retrieval.
Module 6: File Handling
Objective: Learn how to handle files in Python for reading, writing, and managing data stored in plain text or CSV files. This module will introduce essential file operations and the csv
module for structured data.
1. Reading Files
A. Using open()
and .read()
The open()
function is used to open a file in Python. It returns a file object, which can be used to read or write to the file.
Syntax
file = open("filename", mode)
filename
: Path to the file.mode
: Specifies the operation (e.g., read, write, append)."r"
: Read (default mode)."rb"
: Read in binary mode.
B. Reading File Content
read()
: Reads the entire content of the file.readline()
: Reads one line at a time.readlines()
: Reads all lines and returns them as a list.
Examples
# Example file: example.txt
# Content:
# Hello, World!
# Welcome to Python.
# Reading the entire file
file = open("example.txt", "r")
content = file.read()
print(content) # Output: Hello, World!\nWelcome to Python.
file.close()
# Reading line by line
file = open("example.txt", "r")
line = file.readline()
while line:
print(line.strip()) # Output: Hello, World! \n Welcome to Python.
line = file.readline()
file.close()
# Reading all lines at once
file = open("example.txt", "r")
lines = file.readlines()
print(lines) # Output: ['Hello, World!\n', 'Welcome to Python.\n']
file.close()
C. Using with
Statement
The with
statement automatically closes the file after the operation is complete.
Example
with open("example.txt", "r") as file:
content = file.read()
print(content)
2. Writing Files
A. Writing to a File
Use the mode "w"
(write) or "a"
(append) to write to a file. Writing will overwrite existing content, while appending will add new content to the end.
Example
# Writing to a file
with open("example.txt", "w") as file:
file.write("Hello, World!\n")
file.write("Welcome to Python.\n")
# Appending to a file
with open("example.txt", "a") as file:
file.write("This is an appended line.\n")
B. Writing Multiple Lines
Use a list of strings and the writelines()
method to write multiple lines.
Example
lines = ["Line 1\n", "Line 2\n", "Line 3\n"]
with open("example.txt", "w") as file:
file.writelines(lines)
3. Working with CSV Files
A. Overview of the csv
Module
The csv
module allows easy handling of CSV (Comma-Separated Values) files, commonly used for storing tabular data.
B. Reading CSV Files
Use csv.reader()
to read CSV files.
Example: Reading a CSV File
import csv
with open("example.csv", "r") as file:
reader = csv.reader(file)
for row in reader:
print(row)
CSV File: example.csv
Name,Age,City
Alice,25,New York
Bob,30,Los Angeles
Output:
['Name', 'Age', 'City']
['Alice', '25', 'New York']
['Bob', '30', 'Los Angeles']
C. Writing CSV Files
Use csv.writer()
to write data into a CSV file.
Example: Writing to a CSV File
import csv
data = [
["Name", "Age", "City"],
["Alice", 25, "New York"],
["Bob", 30, "Los Angeles"]
]
with open("example.csv", "w", newline="") as file:
writer = csv.writer(file)
writer.writerows(data)
Output File: example.csv
Name,Age,City
Alice,25,New York
Bob,30,Los Angeles
D. Reading CSV as a Dictionary
Use csv.DictReader()
to read rows as dictionaries.
Example
import csv
with open("example.csv", "r") as file:
reader = csv.DictReader(file)
for row in reader:
print(row)
Output:
{'Name': 'Alice', 'Age': '25', 'City': 'New York'}
{'Name': 'Bob', 'Age': '30', 'City': 'Los Angeles'}
E. Writing CSV as a Dictionary
Use csv.DictWriter()
to write dictionaries to a CSV file.
Example
import csv
data = [
{"Name": "Alice", "Age": 25, "City": "New York"},
{"Name": "Bob", "Age": 30, "City": "Los Angeles"}
]
with open("example.csv", "w", newline="") as file:
fieldnames = ["Name", "Age", "City"]
writer = csv.DictWriter(file, fieldnames=fieldnames)
writer.writeheader() # Write the header row
writer.writerows(data)
4. Practical Exercises
Exercise 1: Read and Print a Text File
Write a program to read and print the contents of a text file.
Solution:
with open("example.txt", "r") as file:
content = file.read()
print(content)
Exercise 2: Append to a Text File
Write a program to append a new line to a file.
Solution:
with open("example.txt", "a") as file:
file.write("This is a new line.\n")
Exercise 3: CSV Reader
Write a program to read a CSV file and print only the rows where age is greater than 25.
Solution:
import csv
with open("example.csv", "r") as file:
reader = csv.DictReader(file)
for row in reader:
if int(row["Age"]) > 25:
print(row)
Exercise 4: CSV Writer
Write a program to write data of students (Name, Age, Grade) into a CSV file.
Solution:
import csv
data = [
{"Name": "Alice", "Age": 20, "Grade": "A"},
{"Name": "Bob", "Age": 22, "Grade": "B"}
]
with open("students.csv", "w", newline="") as file:
fieldnames = ["Name", "Age", "Grade"]
writer = csv.DictWriter(file, fieldnames=fieldnames)
writer.writeheader()
writer.writerows(data)
5. Summary
Key Takeaways:
- Reading Files:
- Use
open()
and methods like.read()
,.readline()
, and.readlines()
. - Use
with
to manage file closing automatically.
- Use
- Writing Files:
- Use
write()
to add content andwritelines()
for multiple lines. - Use
"w"
for overwriting and"a"
for appending.
- Use
- Working with CSV:
- Use the
csv
module for reading and writing structured data. csv.DictReader
andcsv.DictWriter
simplify working with dictionaries.
- Use the
Module 7: Error and Exception Handling
Objective: Learn how to identify and handle common exceptions in Python using try
, except
, and finally
blocks. This module will also explore raising custom exceptions with the raise
keyword to manage errors effectively.
1. Common Exceptions
A. What are Exceptions?
Exceptions are errors that occur during the execution of a program. They disrupt the normal flow of the program but can be handled to prevent crashes.
B. Common Exceptions in Python
Exception | Description |
---|---|
ValueError | Raised when a function receives an argument of the wrong type. |
TypeError | Raised when an operation is applied to an incompatible type. |
ZeroDivisionError | Raised when a number is divided by zero. |
IndexError | Raised when accessing an invalid index in a list or tuple. |
KeyError | Raised when accessing a non-existent key in a dictionary. |
FileNotFoundError | Raised when a file or directory cannot be found. |
C. Examples
1. ValueError
num = int("abc") # Raises ValueError: invalid literal for int()
2. TypeError
result = "5" + 5 # Raises TypeError: can only concatenate str (not "int") to str
3. ZeroDivisionError
result = 10 / 0 # Raises ZeroDivisionError: division by zero
4. IndexError
numbers = [1, 2, 3]
print(numbers[5]) # Raises IndexError: list index out of range
2. Using try
, except
, and finally
A. Overview
try
block: Code that might raise an exception is placed here.except
block: Code to handle the exception.finally
block: Code that always executes, regardless of whether an exception occurred.
B. Syntax
try:
# Code that may raise an exception
except ExceptionType:
# Code to handle the exception
finally:
# Code that will always execute (optional)
C. Handling Specific Exceptions
Example
try:
num = int(input("Enter a number: "))
result = 10 / num
print(f"Result: {result}")
except ValueError:
print("Please enter a valid integer.")
except ZeroDivisionError:
print("Cannot divide by zero.")
finally:
print("Execution complete.")
Output (if num = 0
):
Cannot divide by zero.
Execution complete.
Output (if num = abc
):
Please enter a valid integer.
Execution complete.
D. Catching All Exceptions
Use a general except
block to handle any exception.
try:
# Some risky code
except Exception as e:
print(f"An error occurred: {e}")
E. Using else
The else
block executes if no exception is raised.
Example
try:
num = int(input("Enter a number: "))
result = 10 / num
except ZeroDivisionError:
print("Cannot divide by zero.")
except ValueError:
print("Please enter a valid number.")
else:
print(f"Result: {result}") # Executes only if no exception occurs
finally:
print("Execution complete.")
3. Raising Exceptions
A. Overview
Use the raise
keyword to trigger an exception manually.
B. Syntax
raise ExceptionType("Error message")
C. Examples
1. Raising Built-in Exceptions
def divide(a, b):
if b == 0:
raise ZeroDivisionError("Cannot divide by zero.")
return a / b
try:
print(divide(10, 0))
except ZeroDivisionError as e:
print(e)
2. Custom Exceptions
You can define custom exceptions by creating a new class that inherits from Exception
.
class NegativeNumberError(Exception):
"""Custom exception for negative numbers."""
pass
def check_positive(num):
if num < 0:
raise NegativeNumberError("Negative numbers are not allowed.")
print(f"Number {num} is positive.")
try:
check_positive(-5)
except NegativeNumberError as e:
print(e)
Output:
Negative numbers are not allowed.
4. Practical Exercises
Exercise 1: Catch Specific Exceptions
Write a program to:
- Take two numbers as input.
- Perform division.
- Handle
ValueError
andZeroDivisionError
.
Solution:
try:
num1 = int(input("Enter the numerator: "))
num2 = int(input("Enter the denominator: "))
result = num1 / num2
print(f"Result: {result}")
except ValueError:
print("Please enter valid numbers.")
except ZeroDivisionError:
print("Cannot divide by zero.")
Exercise 2: Raising Exceptions
Write a function to check if a number is positive. Raise an exception if it is negative.
Solution:
def check_positive(num):
if num < 0:
raise ValueError("Negative numbers are not allowed.")
return True
try:
print(check_positive(-5))
except ValueError as e:
print(e)
Exercise 3: Using finally
Write a program to open a file, read its content, and ensure the file is closed using finally
.
Solution:
try:
file = open("example.txt", "r")
print(file.read())
except FileNotFoundError:
print("File not found.")
finally:
file.close()
print("File closed.")
Exercise 4: Custom Exception
Define a custom exception for invalid age input and raise it if the age is negative.
Solution:
class InvalidAgeError(Exception):
"""Custom exception for invalid age."""
pass
def check_age(age):
if age < 0:
raise InvalidAgeError("Age cannot be negative.")
print(f"Age: {age}")
try:
check_age(-3)
except InvalidAgeError as e:
print(e)
5. Summary
Key Takeaways:
- Common Exceptions:
- Python provides many built-in exceptions like
ValueError
,TypeError
,IndexError
, etc.
- Python provides many built-in exceptions like
- Using
try
,except
, andfinally
:- Handle exceptions gracefully to avoid program crashes.
- Raising Exceptions:
- Use
raise
to trigger exceptions manually, including custom exceptions.
- Use
- Custom Exceptions:
- Create specialized exception classes for specific use cases.
Module 8: Object-Oriented Programming (OOP)
Objective: Master the concepts of Object-Oriented Programming (OOP) in Python, including creating classes and objects, understanding methods and constructors, using inheritance and polymorphism for code reusability, and managing encapsulation to protect data integrity.
1. Classes and Objects
A. What is a Class?
- A class is a blueprint for creating objects.
- It defines attributes (data) and methods (functions) that the objects will have.
B. What is an Object?
- An object is an instance of a class.
- Objects are created using the class blueprint.
C. Defining a Class
Syntax
class ClassName:
# Attributes and methods
Example
# Defining a class
class Dog:
# Attribute
species = "Canine"
# Method
def bark(self):
print("Woof! Woof!")
# Creating an object
my_dog = Dog()
print(my_dog.species) # Output: Canine
my_dog.bark() # Output: Woof! Woof!
2. Methods and Constructors
A. Methods
- Methods are functions defined inside a class.
- The first parameter of any method is
self
, which refers to the instance calling the method.
Example
class Dog:
def bark(self):
print("Woof! Woof!")
# Using a method
my_dog = Dog()
my_dog.bark()
B. Constructors
- A constructor is a special method used to initialize an object when it is created.
- It is defined using the
__init__
method.
Example
class Dog:
def __init__(self, name, age):
self.name = name # Instance variable
self.age = age # Instance variable
def bark(self):
print(f"{self.name} says Woof!")
# Creating an object with constructor
my_dog = Dog("Buddy", 3)
print(my_dog.name) # Output: Buddy
print(my_dog.age) # Output: 3
my_dog.bark() # Output: Buddy says Woof!
3. Inheritance and Polymorphism
A. Inheritance
- Inheritance allows a class to inherit the attributes and methods of another class.
- The parent class is also called the base class, and the child class is the derived class.
Example
class Animal:
def eat(self):
print("This animal eats food.")
class Dog(Animal):
def bark(self):
print("Woof! Woof!")
# Using inheritance
my_dog = Dog()
my_dog.eat() # Output: This animal eats food.
my_dog.bark() # Output: Woof! Woof!
B. Polymorphism
- Polymorphism allows different classes to have methods with the same name, which behave differently depending on the object.
Example
class Animal:
def sound(self):
print("Animals make sounds.")
class Dog(Animal):
def sound(self):
print("Woof! Woof!")
class Cat(Animal):
def sound(self):
print("Meow!")
# Using polymorphism
animals = [Dog(), Cat()]
for animal in animals:
animal.sound()
Output:
Woof! Woof!
Meow!
4. Encapsulation with Private/Public Attributes
A. Public Attributes
- By default, all attributes in Python are public and can be accessed from outside the class.
Example
class Dog:
def __init__(self, name):
self.name = name # Public attribute
my_dog = Dog("Buddy")
print(my_dog.name) # Output: Buddy
B. Private Attributes
- Private attributes are indicated by a double underscore (
__
) prefix. - They cannot be accessed directly from outside the class.
Example
class Dog:
def __init__(self, name):
self.__name = name # Private attribute
def get_name(self): # Getter method
return self.__name
def set_name(self, name): # Setter method
self.__name = name
my_dog = Dog("Buddy")
print(my_dog.get_name()) # Output: Buddy
my_dog.set_name("Max")
print(my_dog.get_name()) # Output: Max
C. Why Encapsulation?
- Encapsulation hides sensitive data to protect it from being modified accidentally.
- Access to private attributes is controlled through getter and setter methods.
5. Practical Exercises
Exercise 1: Creating Classes and Objects
Write a Car
class with:
- Attributes:
brand
,model
,year
. - A method
start()
that prints “The car is starting.”
Solution:
class Car:
def __init__(self, brand, model, year):
self.brand = brand
self.model = model
self.year = year
def start(self):
print(f"The {self.brand} {self.model} is starting.")
my_car = Car("Toyota", "Corolla", 2020)
my_car.start()
Exercise 2: Inheritance
Create a Person
class and a Student
subclass. The Student
class should have an additional attribute student_id
.
Solution:
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def greet(self):
print(f"Hello, my name is {self.name}.")
class Student(Person):
def __init__(self, name, age, student_id):
super().__init__(name, age)
self.student_id = student_id
def show_id(self):
print(f"My student ID is {self.student_id}.")
student = Student("Alice", 20, "S12345")
student.greet()
student.show_id()
Exercise 3: Polymorphism
Write two classes, Bird
and Fish
, both with a move()
method. Demonstrate polymorphism by calling move()
on instances of both classes.
Solution:
class Bird:
def move(self):
print("I fly.")
class Fish:
def move(self):
print("I swim.")
animals = [Bird(), Fish()]
for animal in animals:
animal.move()
Exercise 4: Encapsulation
Create a BankAccount
class with a private attribute __balance
and methods deposit()
and withdraw()
.
Solution:
class BankAccount:
def __init__(self):
self.__balance = 0
def deposit(self, amount):
if amount > 0:
self.__balance += amount
print(f"Deposited: {amount}")
else:
print("Invalid amount.")
def withdraw(self, amount):
if 0 < amount <= self.__balance:
self.__balance -= amount
print(f"Withdrawn: {amount}")
else:
print("Invalid transaction.")
def get_balance(self):
return self.__balance
account = BankAccount()
account.deposit(100)
account.withdraw(50)
print(f"Balance: {account.get_balance()}")
6. Summary
Key Takeaways:
- Classes and Objects:
- A class is a blueprint; an object is an instance of a class.
- Methods and Constructors:
- Methods define object behavior; constructors initialize objects.
- Inheritance and Polymorphism:
- Inheritance promotes reusability; polymorphism allows different behaviors for the same method name.
- Encapsulation:
- Protects sensitive data using private attributes and getter/setter methods.
Module 9: Modules and Libraries
Objective: Understand how to create and use Python modules, import functionality from modules, and work with standard libraries such as math
, datetime
, and random
. Modules and libraries help in organizing code and using pre-built functionalities to save time and effort.
1. Creating and Using Modules
A. What is a Module?
- A module is a file containing Python code (functions, variables, or classes) that can be reused in other programs.
- Modules make it easy to organize code and avoid duplication.
B. Creating a Module
A module is simply a .py
file with reusable code.
Example: Create a File greetings.py
# greetings.py
def say_hello(name):
return f"Hello, {name}!"
def say_goodbye(name):
return f"Goodbye, {name}!"
C. Using a Module
To use the functions from a module, you can import
it.
Example
# main.py
import greetings
print(greetings.say_hello("Alice")) # Output: Hello, Alice!
print(greetings.say_goodbye("Alice")) # Output: Goodbye, Alice!
D. Importing Specific Functions
Use from ... import
to import specific functions or variables.
Example
from greetings import say_hello
print(say_hello("Bob")) # Output: Hello, Bob!
E. Aliasing a Module
Use as
to give a module or function an alias.
Example
import greetings as gr
print(gr.say_hello("Charlie")) # Output: Hello, Charlie!
2. Standard Libraries
Python comes with a wide range of built-in libraries for common tasks. Here, we will focus on math
, datetime
, and random
.
A. The math
Module
1. Overview
The math
module provides functions for mathematical operations.
2. Common Functions
Function | Description |
---|---|
math.sqrt(x) | Returns the square root of x . |
math.pow(x, y) | Returns x raised to the power y . |
math.pi | Returns the value of π (3.14159…). |
math.sin(x) | Returns the sine of x (in radians). |
math.factorial(x) | Returns the factorial of x . |
Example
import math
print(math.sqrt(16)) # Output: 4.0
print(math.pow(2, 3)) # Output: 8.0
print(math.pi) # Output: 3.141592653589793
print(math.sin(math.pi / 2)) # Output: 1.0
print(math.factorial(5)) # Output: 120
B. The datetime
Module
1. Overview
The datetime
module helps in working with dates and times.
2. Common Classes and Methods
Function/Class | Description |
---|---|
datetime.datetime.now() | Returns the current date and time. |
datetime.date() | Represents a date (year, month, day). |
datetime.timedelta() | Represents a duration, used for date arithmetic. |
strftime(format) | Formats a date/time object into a string. |
Example
import datetime
# Get the current date and time
now = datetime.datetime.now()
print(f"Current Date and Time: {now}")
# Create a specific date
specific_date = datetime.date(2024, 1, 1)
print(f"Specific Date: {specific_date}")
# Add 7 days to the current date
future_date = now + datetime.timedelta(days=7)
print(f"Date 7 days from now: {future_date.strftime('%Y-%m-%d')}")
C. The random
Module
1. Overview
The random
module is used to generate random numbers and perform random operations.
2. Common Functions
Function | Description |
---|---|
random.randint(a, b) | Returns a random integer between a and b . |
random.random() | Returns a random float between 0 and 1. |
random.choice(seq) | Returns a random element from a sequence. |
random.shuffle(seq) | Shuffles the elements of a sequence in place. |
random.sample(seq, k) | Returns a random sample of k elements. |
Example
import random
# Random integer
print(random.randint(1, 10)) # Output: Random number between 1 and 10
# Random float
print(random.random()) # Output: Random number between 0.0 and 1.0
# Random choice
fruits = ["apple", "banana", "cherry"]
print(random.choice(fruits)) # Output: Randomly chosen fruit
# Shuffle a list
numbers = [1, 2, 3, 4, 5]
random.shuffle(numbers)
print(numbers) # Output: Shuffled list
# Random sample
print(random.sample(numbers, 3)) # Output: Random 3 numbers from the list
3. Practical Exercises
Exercise 1: Using a Custom Module
Create a math_operations.py
module with the following functions:
add(a, b)
subtract(a, b)
multiply(a, b)
divide(a, b)
Import the module and use its functions.
Solution:
# math_operations.py
def add(a, b):
return a + b
def subtract(a, b):
return a - b
def multiply(a, b):
return a * b
def divide(a, b):
if b != 0:
return a / b
return "Division by zero is not allowed"
# main.py
import math_operations
print(math_operations.add(10, 5)) # Output: 15
print(math_operations.divide(10, 0)) # Output: Division by zero is not allowed
Exercise 2: Using the math
Module
Write a program to calculate the area of a circle given its radius.
Solution:
import math
radius = float(input("Enter the radius of the circle: "))
area = math.pi * math.pow(radius, 2)
print(f"Area of the circle: {area}")
Exercise 3: Using the datetime
Module
Write a program to display today’s date and calculate the date 30 days from today.
Solution:
import datetime
today = datetime.date.today()
future_date = today + datetime.timedelta(days=30)
print(f"Today's date: {today}")
print(f"Date 30 days from today: {future_date}")
Exercise 4: Using the random
Module
Write a program to simulate a dice roll (random number between 1 and 6).
Solution:
import random
dice_roll = random.randint(1, 6)
print(f"Dice rolled: {dice_roll}")
4. Summary
Key Takeaways:
- Modules:
- Organize code into reusable files (
.py
files). - Use
import
orfrom ... import
to bring modules into your program.
- Organize code into reusable files (
- Standard Libraries:
math
: For mathematical operations.datetime
: For working with dates and times.random
: For generating random numbers and operations.
- Practical Use:
- Use built-in modules to simplify coding tasks.
Module 10: Regular Expressions
Objective: Learn how to use Python’s re
module to work with regular expressions for searching, matching, replacing, and extracting data in text. Regular expressions (regex) are powerful tools for text processing and pattern matching.
1. Using the re
Module
A. Overview
The re
module in Python provides functions to work with regular expressions. Commonly used functions include:
re.search()
: Searches for a pattern in a string.re.match()
: Checks if a string matches a pattern at the beginning.re.findall()
: Returns all occurrences of a pattern in a string.re.sub()
: Replaces occurrences of a pattern with a specified string.
B. Importing the re
Module
import re
C. Defining Patterns
Regex patterns are defined as strings, using special characters for matching:
Character | Description |
---|---|
. | Matches any single character. |
\d | Matches any digit (0-9). |
\w | Matches any word character. |
\s | Matches any whitespace. |
* | Matches 0 or more occurrences. |
+ | Matches 1 or more occurrences. |
? | Matches 0 or 1 occurrence. |
^ | Matches the start of a string. |
$ | Matches the end of a string. |
2. Searching and Matching Patterns
A. Using re.search()
- Finds the first match of a pattern in a string.
- Returns a
Match
object if found, otherwiseNone
.
Example
import re
text = "Welcome to Python 101!"
pattern = r"\d+" # Match one or more digits
match = re.search(pattern, text)
if match:
print(f"Found match: {match.group()}") # Output: Found match: 101
else:
print("No match found.")
B. Using re.match()
- Matches a pattern only at the beginning of the string.
Example
text = "Python is fun."
pattern = r"Python"
match = re.match(pattern, text)
if match:
print("Match found at the beginning.") # Output: Match found at the beginning.
else:
print("No match found.")
C. Using re.findall()
- Finds all occurrences of a pattern in a string and returns them as a list.
Example
text = "My numbers are 123, 456, and 789."
pattern = r"\d+" # Match all numbers
matches = re.findall(pattern, text)
print(matches) # Output: ['123', '456', '789']
3. Replacing and Extracting Data Using Regex
A. Using re.sub()
- Replaces all occurrences of a pattern with a specified string.
Example
text = "My email is [email protected]."
pattern = r"@\w+\.\w+" # Match domain
result = re.sub(pattern, "@hidden.com", text)
print(result) # Output: My email is [email protected].
B. Using Groups to Extract Data
- Parentheses
( )
in a pattern define groups to extract specific parts of a match.
Example
text = "My phone number is (123) 456-7890."
pattern = r"\((\d+)\)\s(\d+)-(\d+)" # Match area code, prefix, and line number
match = re.search(pattern, text)
if match:
print(f"Area code: {match.group(1)}") # Output: Area code: 123
print(f"Prefix: {match.group(2)}") # Output: Prefix: 456
print(f"Line number: {match.group(3)}") # Output: Line number: 7890
C. Escaping Special Characters
- Use
\
to escape special characters when you want to match them literally.
Example
text = "Price is $100."
pattern = r"\$100"
if re.search(pattern, text):
print("Match found!") # Output: Match found!
4. Practical Exercises
Exercise 1: Validate Email Addresses
Write a program to validate if an email address is in the format [email protected]
.
Solution:
import re
email = "[email protected]"
pattern = r"^\w+@\w+\.\w+$"
if re.match(pattern, email):
print("Valid email.") # Output: Valid email.
else:
print("Invalid email.")
Exercise 2: Extract Phone Numbers
Write a program to extract phone numbers in the format (XXX) XXX-XXXX
from a string.
Solution:
text = "Contact me at (123) 456-7890 or (987) 654-3210."
pattern = r"\(\d{3}\)\s\d{3}-\d{4}"
matches = re.findall(pattern, text)
print(matches) # Output: ['(123) 456-7890', '(987) 654-3210']
Exercise 3: Replace Dates
Replace all dates in the format YYYY-MM-DD
with MM/DD/YYYY
.
Solution:
text = "Today's date is 2024-11-28."
pattern = r"(\d{4})-(\d{2})-(\d{2})"
result = re.sub(pattern, r"\2/\3/\1", text)
print(result) # Output: Today's date is 11/28/2024.
Exercise 4: Extract Words
Extract all words that start with a capital letter from a string.
Solution:
text = "Alice and Bob are going to New York."
pattern = r"\b[A-Z][a-z]*\b"
matches = re.findall(pattern, text)
print(matches) # Output: ['Alice', 'Bob', 'New', 'York']
5. Summary
Key Takeaways:
- Using the
re
Module:- Import the module with
import re
. - Use functions like
search()
,match()
,findall()
, andsub()
for regex operations.
- Import the module with
- Searching and Matching:
search()
finds the first occurrence of a pattern.match()
checks if the pattern matches the start of the string.
- Replacing and Extracting:
- Use
sub()
to replace patterns and groups to extract specific parts of matches.
- Use
- Regular Expressions:
- Use regex syntax (
\d
,\w
,^
,$
, etc.) to create powerful patterns.
- Use regex syntax (
Module 11: Data Analysis
Objective: Understand the foundational tools for data analysis in Python, focusing on the use of pandas for handling data structures and matplotlib for visualizing data. This module covers working with DataFrames, reading/writing files, data cleaning, and creating basic plots.
1. Introduction to pandas
A. What is pandas?
- pandas is a Python library for data manipulation and analysis.
- It provides two primary data structures:
- Series: One-dimensional labeled arrays (similar to a list or array).
- DataFrame: Two-dimensional labeled tables (like a spreadsheet).
Importing pandas
import pandas as pd
B. Series and DataFrames
1. Series
A Series is a one-dimensional labeled array.
Example:
import pandas as pd
data = [10, 20, 30, 40]
series = pd.Series(data, index=["a", "b", "c", "d"])
print(series)
Output:
a 10
b 20
c 30
d 40
dtype: int64
2. DataFrame
A DataFrame is a two-dimensional table.
Example:
data = {
"Name": ["Alice", "Bob", "Charlie"],
"Age": [25, 30, 35],
"City": ["New York", "Los Angeles", "Chicago"]
}
df = pd.DataFrame(data)
print(df)
Output:
Name Age City
0 Alice 25 New York
1 Bob 30 Los Angeles
2 Charlie 35 Chicago
C. Reading and Writing CSV/Excel Files
1. Reading a CSV File
df = pd.read_csv("data.csv")
print(df.head()) # Display the first 5 rows
2. Writing to a CSV File
df.to_csv("output.csv", index=False)
3. Reading and Writing Excel Files
Requires the openpyxl
library for Excel file support.
# Reading an Excel file
df = pd.read_excel("data.xlsx")
# Writing to an Excel file
df.to_excel("output.xlsx", index=False)
D. Data Cleaning and Manipulation
1. Handling Missing Data
fillna()
: Replace missing values.dropna()
: Remove rows/columns with missing values.
Example:
data = {
"Name": ["Alice", "Bob", None],
"Age": [25, None, 35],
"City": ["New York", "Los Angeles", "Chicago"]
}
df = pd.DataFrame(data)
df.fillna("Unknown", inplace=True)
print(df)
Output:
Name Age City
0 Alice 25.0 New York
1 Bob Unknown Los Angeles
2 Unknown 35.0 Chicago
2. Filtering and Sorting
- Filtering:
filtered_df = df[df["Age"] > 30]
print(filtered_df)
- Sorting:
sorted_df = df.sort_values(by="Age", ascending=False)
print(sorted_df)
3. Adding/Removing Columns
- Adding:
df["Country"] = ["USA", "USA", "USA"]
- Removing:
df.drop(columns=["Country"], inplace=True)
2. Basic Visualization with matplotlib
A. What is matplotlib?
- matplotlib is a Python library for creating static, interactive, and animated visualizations.
Importing matplotlib
import matplotlib.pyplot as plt
B. Creating Basic Plots
1. Line Plot
x = [1, 2, 3, 4]
y = [10, 20, 30, 40]
plt.plot(x, y, marker="o")
plt.title("Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()
2. Bar Plot
categories = ["A", "B", "C"]
values = [10, 15, 7]
plt.bar(categories, values, color="skyblue")
plt.title("Bar Plot")
plt.xlabel("Categories")
plt.ylabel("Values")
plt.show()
3. Scatter Plot
x = [5, 7, 8, 7, 2, 17, 2, 9, 4, 11]
y = [99, 86, 87, 88, 100, 86, 103, 87, 94, 78]
plt.scatter(x, y, color="green")
plt.title("Scatter Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()
C. Combining pandas and matplotlib
You can use pandas directly for plotting.
Example
data = {
"Year": [2018, 2019, 2020, 2021],
"Sales": [100, 200, 300, 400]
}
df = pd.DataFrame(data)
df.plot(x="Year", y="Sales", kind="line", marker="o", title="Sales Over Years")
plt.show()
3. Practical Exercises
Exercise 1: Reading a CSV File
Write a program to read a CSV file containing student data, filter students with scores greater than 80, and save the filtered data to a new file.
Solution:
import pandas as pd
# Reading the CSV file
df = pd.read_csv("students.csv")
# Filtering
filtered_df = df[df["Score"] > 80]
# Saving to a new file
filtered_df.to_csv("filtered_students.csv", index=False)
Exercise 2: Plot Sales Data
Write a program to create a bar plot of product sales.
Solution:
import matplotlib.pyplot as plt
products = ["Product A", "Product B", "Product C"]
sales = [150, 200, 100]
plt.bar(products, sales, color="orange")
plt.title("Product Sales")
plt.xlabel("Products")
plt.ylabel("Sales")
plt.show()
Exercise 3: Data Cleaning
Write a program to replace missing values in a DataFrame with the mean of the column.
Solution:
import pandas as pd
import numpy as np
data = {
"Name": ["Alice", "Bob", "Charlie"],
"Age": [25, np.nan, 35],
"Score": [85, 90, np.nan]
}
df = pd.DataFrame(data)
# Fill missing values with column mean
df["Age"].fillna(df["Age"].mean(), inplace=True)
df["Score"].fillna(df["Score"].mean(), inplace=True)
print(df)
Exercise 4: Plot with pandas
Write a program to read a CSV file containing sales data and plot a line chart of monthly sales.
Solution:
import pandas as pd
import matplotlib.pyplot as plt
# Reading data
df = pd.read_csv("sales.csv")
# Plotting
df.plot(x="Month", y="Sales", kind="line", marker="o", title="Monthly Sales")
plt.show()
4. Summary
Key Takeaways:
- pandas:
Series
andDataFrame
are the primary data structures.- Use
read_csv()
andto_csv()
for file I/O. - Data cleaning tools include
fillna()
anddropna()
.
- matplotlib:
- Use
plot()
,bar()
, andscatter()
for creating basic visualizations. - Combine pandas and matplotlib for seamless plotting.
- Use
- Integration:
- pandas simplifies data manipulation, while matplotlib provides visualization tools for insights.
Module 12: Web Scraping
Objective: Learn the essential tools and techniques for extracting data from websites using Python. This module covers fetching web data with requests
, parsing HTML with BeautifulSoup
, and handling dynamic content with selenium
.
1. Fetching Web Data Using requests
A. What is requests
?
- The
requests
library allows you to send HTTP requests to websites and retrieve their content.
Installing requests
pip install requests
B. Sending HTTP Requests
Use requests.get()
to fetch web page content.
Example
import requests
url = "https://example.com"
response = requests.get(url)
if response.status_code == 200: # Check if the request was successful
print(response.text) # Prints the HTML content of the page
else:
print(f"Failed to fetch page. Status code: {response.status_code}")
C. Handling Common Issues
Timeouts:
response = requests.get(url, timeout=5) # Waits up to 5 seconds
Headers: Many websites block requests without a user-agent header.
headers = {"User-Agent": "Mozilla/5.0"} response = requests.get(url, headers=headers)
2. Parsing HTML with BeautifulSoup
A. What is BeautifulSoup
?
BeautifulSoup
is a library for parsing and navigating HTML and XML documents.
Installing BeautifulSoup
pip install beautifulsoup4
B. Creating a BeautifulSoup Object
from bs4 import BeautifulSoup
html_content = response.text # Get HTML content using requests
soup = BeautifulSoup(html_content, "html.parser")
C. Navigating the HTML Tree
Find Elements by Tag:
title = soup.title # Finds the <title> tag print(title.text) # Extracts text from the <title> tag
Find Elements by Class:
paragraphs = soup.find_all("p", class_="intro") # Finds all <p> tags with class="intro" for p in paragraphs: print(p.text)
Find Elements by ID:
div = soup.find("div", id="main") # Finds a <div> with id="main" print(div.text)
D. Extracting Links and Text
Extracting All Links:
links = soup.find_all("a") for link in links: print(link["href"]) # Prints the href attribute of each <a> tag
Extracting Text Content:
text = soup.get_text() # Gets all text content on the page print(text)
E. Practical Example: Scraping a Blog
import requests
from bs4 import BeautifulSoup
url = "https://example-blog.com"
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, "html.parser")
articles = soup.find_all("h2", class_="post-title")
for article in articles:
print(article.text) # Print the title of each blog post
3. Handling Dynamic Websites with selenium
A. What is selenium
?
selenium
automates web browsers and handles websites that require JavaScript to render content.
Installing selenium
pip install selenium
B. Setting Up Selenium
Install a WebDriver: Selenium requires a browser driver (e.g., ChromeDriver for Google Chrome). Download ChromeDriver.
Launching a Browser:
from selenium import webdriver driver = webdriver.Chrome(executable_path="/path/to/chromedriver") driver.get("https://example.com") print(driver.title) # Prints the page title
C. Interacting with Web Pages
Finding Elements:
search_box = driver.find_element("name", "q") # Finds an element by its name attribute search_box.send_keys("Web scraping") # Types into the search box search_box.submit() # Submits the form
Clicking Buttons:
button = driver.find_element("id", "search-button") button.click()
Extracting Content:
elements = driver.find_elements("tag name", "h2") for element in elements: print(element.text)
D. Waiting for Elements to Load
Dynamic websites often require waiting for elements to load.
Example
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
# Wait for an element to appear
element = WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.ID, "main-content"))
)
print(element.text)
E. Closing the Browser
driver.quit() # Closes the browser
F. Practical Example: Scraping a Dynamic Website
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
driver = webdriver.Chrome(executable_path="/path/to/chromedriver")
driver.get("https://example-dynamic.com")
# Wait for an element to load and extract data
try:
articles = WebDriverWait(driver, 10).until(
EC.presence_of_all_elements_located((By.CLASS_NAME, "article-title"))
)
for article in articles:
print(article.text)
finally:
driver.quit()
4. Practical Exercises
Exercise 1: Fetch and Parse HTML
Write a program to fetch the HTML of a website and extract all <h1>
headings.
Solution:
import requests
from bs4 import BeautifulSoup
url = "https://example.com"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
headings = soup.find_all("h1")
for heading in headings:
print(heading.text)
Exercise 2: Extract Links
Write a program to extract all internal and external links from a webpage.
Solution:
import requests
from bs4 import BeautifulSoup
url = "https://example.com"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
links = soup.find_all("a")
for link in links:
href = link.get("href")
if href and href.startswith("http"):
print(f"External link: {href}")
elif href:
print(f"Internal link: {href}")
Exercise 3: Scrape a Dynamic Website
Write a program to scrape titles of news articles from a dynamic website using selenium
.
Solution:
from selenium import webdriver
from selenium.webdriver.common.by import By
driver = webdriver.Chrome(executable_path="/path/to/chromedriver")
driver.get("https://example-news.com")
titles = driver.find_elements(By.CLASS_NAME, "news-title")
for title in titles:
print(title.text)
driver.quit()
5. Summary
Key Takeaways:
- Fetching Data:
- Use
requests
for fetching static web pages. - Use headers to handle basic restrictions.
- Use
- Parsing HTML:
- Use
BeautifulSoup
for navigating and extracting data from HTML.
- Use
- Dynamic Websites:
- Use
selenium
for JavaScript-rendered content. - Automate browser actions and handle dynamically loaded elements.
- Use
Module 13: Automation
Objective: Master automation of repetitive tasks using Python libraries. This module covers file and folder operations, email automation, and working with Excel files.
1. Automating File and Folder Tasks with os
and shutil
A. Overview of os
Module
The os
module allows you to interact with the operating system, perform file and directory operations, and navigate the file system.
Common os
Functions
Function | Description |
---|---|
os.getcwd() | Returns the current working directory. |
os.listdir() | Lists files and directories in a folder. |
os.mkdir() | Creates a new directory. |
os.rename() | Renames a file or directory. |
os.remove() | Deletes a file. |
Example: Basic Directory Operations
import os
# Get the current directory
print("Current Directory:", os.getcwd())
# Create a new directory
os.mkdir("new_folder")
# Rename the directory
os.rename("new_folder", "renamed_folder")
# List contents of the current directory
print(os.listdir("."))
# Remove the directory
os.rmdir("renamed_folder")
B. Overview of shutil
Module
The shutil
module provides high-level file operations, such as copying and moving files.
Common shutil
Functions
Function | Description |
---|---|
shutil.copy() | Copies a file to a target location. |
shutil.move() | Moves a file or directory. |
shutil.rmtree() | Deletes a directory and its contents. |
Example: Copying and Moving Files
import shutil
# Copy a file
shutil.copy("source.txt", "destination.txt")
# Move a file
shutil.move("destination.txt", "new_folder/destination.txt")
# Delete a folder and its contents
shutil.rmtree("new_folder")
2. Sending Emails with smtplib
A. Overview
The smtplib
module allows you to send emails using the Simple Mail Transfer Protocol (SMTP).
Installing smtplib
smtplib
is part of Python’s standard library, so no installation is required.
B. Sending a Simple Email
Example
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
# Email details
sender_email = "[email protected]"
receiver_email = "[email protected]"
password = "your_password"
# Create the email
message = MIMEMultipart()
message["From"] = sender_email
message["To"] = receiver_email
message["Subject"] = "Hello from Python"
# Email body
body = "This is an automated email sent using Python."
message.attach(MIMEText(body, "plain"))
# Send the email
try:
with smtplib.SMTP("smtp.gmail.com", 587) as server:
server.starttls() # Secure the connection
server.login(sender_email, password)
server.send_message(message)
print("Email sent successfully!")
except Exception as e:
print(f"Failed to send email: {e}")
C. Sending Emails with Attachments
Example
from email.mime.base import MIMEBase
from email import encoders
# Add an attachment
filename = "document.pdf"
with open(filename, "rb") as attachment:
part = MIMEBase("application", "octet-stream")
part.set_payload(attachment.read())
encoders.encode_base64(part)
part.add_header("Content-Disposition", f"attachment; filename={filename}")
message.attach(part)
# Email sending logic remains the same as above
3. Automating Excel Tasks with openpyxl
A. Overview of openpyxl
openpyxl
is a library for reading and writing Excel files (XLSX).
Installing openpyxl
pip install openpyxl
B. Reading Excel Files
Example
import openpyxl
# Load the workbook
workbook = openpyxl.load_workbook("example.xlsx")
# Select a sheet
sheet = workbook.active
# Read data from cells
print(sheet["A1"].value) # Read cell A1
for row in sheet.iter_rows(min_row=1, max_row=5, max_col=3, values_only=True):
print(row) # Print first 5 rows
C. Writing to Excel Files
Example
# Create a workbook
workbook = openpyxl.Workbook()
# Select the active sheet
sheet = workbook.active
# Write data
sheet["A1"] = "Name"
sheet["B1"] = "Age"
sheet.append(["Alice", 25])
sheet.append(["Bob", 30])
# Save the workbook
workbook.save("new_file.xlsx")
D. Formatting Excel Cells
Example
from openpyxl.styles import Font, PatternFill
# Apply font and color
sheet["A1"].font = Font(bold=True, color="FFFFFF")
sheet["A1"].fill = PatternFill(start_color="0000FF", end_color="0000FF", fill_type="solid")
# Save changes
workbook.save("formatted_file.xlsx")
4. Practical Exercises
Exercise 1: Organize Files in a Folder
Write a script to sort files in a folder into subfolders based on their extensions.
Solution:
import os
import shutil
source_folder = "downloads"
for file in os.listdir(source_folder):
extension = file.split(".")[-1]
folder = os.path.join(source_folder, extension)
os.makedirs(folder, exist_ok=True)
shutil.move(os.path.join(source_folder, file), os.path.join(folder, file))
Exercise 2: Send a Daily Report Email
Write a script to send a daily report email with an Excel file as an attachment.
Solution:
# Use the email sending logic and include the attachment code shown above.
filename = "daily_report.xlsx"
message.attach(part)
Exercise 3: Automate Excel Calculations
Write a script to calculate the total sales in an Excel file and save the result in a new column.
Solution:
import openpyxl
# Load the workbook
workbook = openpyxl.load_workbook("sales.xlsx")
sheet = workbook.active
# Add a Total column
sheet["D1"] = "Total"
for row in range(2, sheet.max_row + 1):
total = sheet[f"B{row}"].value * sheet[f"C{row}"].value
sheet[f"D{row}"] = total
# Save the workbook
workbook.save("sales_with_total.xlsx")
5. Summary
Key Takeaways:
- File Automation:
- Use
os
for file and folder management. - Use
shutil
for copying, moving, and deleting files and directories.
- Use
- Email Automation:
- Automate email sending with
smtplib
. - Add attachments using
MIMEBase
.
- Automate email sending with
- Excel Automation:
- Read, write, and format Excel files with
openpyxl
.
- Read, write, and format Excel files with
Module 14: Introduction to Flask
Objective: Learn the basics of Flask, a lightweight Python web framework. This module covers setting up a Flask project, creating routes and views, handling forms and templates, and building a simple Flask app (a To-Do List).
1. Setting up a Flask Project
A. Installing Flask
Flask can be installed using pip
.
pip install flask
B. Creating a Flask Project
Create a project folder and navigate to it:
mkdir flask_project cd flask_project
Create a file named
app.py
for the main Flask application.Run the Flask app:
flask run
By default, the app runs on
http://127.0.0.1:5000
.
C. Writing Your First Flask App
Code Example
from flask import Flask
app = Flask(__name__)
@app.route("/") # Define the route for the homepage
def home():
return "Welcome to Flask!"
if __name__ == "__main__":
app.run(debug=True)
2. Creating Routes and Views
A. What are Routes?
Routes define the URL paths of your web application and map them to specific functions (views).
Example: Defining Routes
@app.route("/about")
def about():
return "This is the About page."
B. Dynamic Routes
You can use variables in routes by enclosing them in angle brackets (< >
).
Example
@app.route("/user/<username>")
def user_profile(username):
return f"Welcome, {username}!"
URL: http://127.0.0.1:5000/user/John
Output: Welcome, John!
C. HTTP Methods
Routes can handle different HTTP methods (GET, POST).
Example
@app.route("/submit", methods=["GET", "POST"])
def submit():
if request.method == "POST":
return "Form submitted!"
return "Submit your form."
3. Handling Forms and Templates
A. Templates
Flask uses Jinja2 as its template engine. Templates are HTML files stored in a templates
folder.
Example: Creating a Template
Create a
templates
folder and a filetemplates/home.html
:<!DOCTYPE html> <html> <head> <title>Flask App</title> </head> <body> <h1>Welcome to {{ name }}!</h1> </body> </html>
Render the template in your Flask app:
from flask import render_template @app.route("/") def home(): return render_template("home.html", name="Flask")
B. Handling Forms
Create a form in
templates/form.html
:<!DOCTYPE html> <html> <body> <form action="/submit" method="POST"> <label for="name">Name:</label> <input type="text" id="name" name="name"> <button type="submit">Submit</button> </form> </body> </html>
Handle form data in your Flask app:
from flask import request @app.route("/submit", methods=["POST"]) def submit(): name = request.form["name"] return f"Hello, {name}!"
4. Building a Simple Flask App (To-Do List)
A. Overview
In this section, we’ll build a simple To-Do List app where users can:
- View tasks.
- Add new tasks.
- Delete tasks.
B. File Structure
flask_project/
|-- app.py
|-- templates/
|-- index.html
|-- add_task.html
C. Code Implementation
1. Flask Application (app.py
)
from flask import Flask, render_template, request, redirect, url_for
app = Flask(__name__)
# Store tasks in a list
tasks = []
@app.route("/")
def index():
return render_template("index.html", tasks=tasks)
@app.route("/add", methods=["GET", "POST"])
def add_task():
if request.method == "POST":
task = request.form["task"]
tasks.append(task)
return redirect(url_for("index"))
return render_template("add_task.html")
@app.route("/delete/<int:task_id>")
def delete_task(task_id):
if 0 <= task_id < len(tasks):
tasks.pop(task_id)
return redirect(url_for("index"))
if __name__ == "__main__":
app.run(debug=True)
2. Template: Home Page (templates/index.html
)
<!DOCTYPE html>
<html>
<head>
<title>To-Do List</title>
</head>
<body>
<h1>To-Do List</h1>
<ul>
{% for task in tasks %}
<li>{{ task }} <a href="/delete/{{ loop.index0 }}">Delete</a></li>
{% endfor %}
</ul>
<a href="/add">Add Task</a>
</body>
</html>
3. Template: Add Task Page (templates/add_task.html
)
<!DOCTYPE html>
<html>
<head>
<title>Add Task</title>
</head>
<body>
<h1>Add a New Task</h1>
<form action="/add" method="POST">
<label for="task">Task:</label>
<input type="text" id="task" name="task" required>
<button type="submit">Add</button>
</form>
<a href="/">Back to To-Do List</a>
</body>
</html>
D. Running the App
- Save the code in
app.py
. - Run the Flask app:
flask run
- Open
http://127.0.0.1:5000
in your browser to interact with the To-Do List app.
5. Practical Exercises
Exercise 1: Add Edit Functionality
Extend the To-Do List app to allow users to edit tasks.
Exercise 2: Save Tasks to a File
Modify the app to save tasks to a file and load them when the app starts.
Exercise 3: Add Task Deadlines
Allow users to add deadlines for tasks and display them.
6. Summary
Key Takeaways:
- Setting up Flask:
- Install Flask using
pip
and create routes with@app.route
.
- Install Flask using
- Templates:
- Use Jinja2 templates for rendering dynamic HTML.
- Forms:
- Handle form submissions with
request.form
and process POST data.
- Handle form submissions with
- Building a Simple App:
- Combine Flask concepts to build functional applications like a To-Do List.
Module 15: Introduction to Django
Objective: Learn the fundamentals of Django, a high-level Python web framework. This module covers setting up a Django project, understanding the Models-Views-Templates (MVT) pattern, and building a simple Django app (e.g., a Blog).
1. Setting Up a Django Project
A. Installing Django
Install Django using pip:
pip install django
B. Creating a Django Project
Create a new Django project:
django-admin startproject myproject cd myproject
Run the development server:
python manage.py runserver
Open your browser and navigate to
http://127.0.0.1:8000
to see the default Django welcome page.
C. Creating a Django App
An app is a specific module within a Django project that focuses on a particular functionality.
Create a new app:
python manage.py startapp blog
Register the app in the project’s settings file (
myproject/settings.py
):INSTALLED_APPS = [ ... 'blog', ]
2. Understanding the MVT Pattern
A. Overview of the MVT Pattern
Django follows the Models-Views-Templates (MVT) architecture:
- Model: Represents the database structure.
- View: Contains the business logic and processes user requests.
- Template: Defines the presentation layer (HTML).
B. Example Workflow
- User sends a request (e.g.,
/posts
). - Django’s URL dispatcher maps the request to a view function.
- The view interacts with the model (database) to fetch data.
- The view passes the data to a template.
- The template renders the data as an HTML response to the user.
3. Building a Simple Django Blog App
A. Defining Models
Models define the structure of the database.
Open
blog/models.py
and define thePost
model:from django.db import models class Post(models.Model): title = models.CharField(max_length=100) content = models.TextField() created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return self.title
Create and apply migrations to update the database schema:
python manage.py makemigrations python manage.py migrate
B. Creating Views
Views handle user requests and return responses.
- Open
blog/views.py
and define a view to list all posts:from django.shortcuts import render from .models import Post def post_list(request): posts = Post.objects.all() return render(request, 'blog/post_list.html', {'posts': posts})
C. Configuring URLs
URLs map user requests to specific views.
Create a new file
blog/urls.py
:from django.urls import path from . import views urlpatterns = [ path('', views.post_list, name='post_list'), ]
Include the app’s URLs in the project’s
urls.py
:from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('blog/', include('blog.urls')), ]
D. Creating Templates
Templates define the presentation layer.
Create a folder
blog/templates/blog/
and add a filepost_list.html
:<!DOCTYPE html> <html> <head> <title>Blog</title> </head> <body> <h1>Blog Posts</h1> <ul> {% for post in posts %} <li> <h2>{{ post.title }}</h2> <p>{{ post.content }}</p> <small>Posted on {{ post.created_at }}</small> </li> {% endfor %} </ul> </body> </html>
Run the development server and navigate to
http://127.0.0.1:8000/blog/
to see the list of posts.
E. Adding the Admin Interface
Django provides an admin interface for managing data.
Create a superuser:
python manage.py createsuperuser
Register the
Post
model inblog/admin.py
:from django.contrib import admin from .models import Post admin.site.register(Post)
Access the admin panel at
http://127.0.0.1:8000/admin/
to add, edit, or delete posts.
4. Practical Exercises
Exercise 1: Add a Detail View
Create a view to display the details of a single blog post.
Update
blog/urls.py
:urlpatterns = [ path('', views.post_list, name='post_list'), path('<int:id>/', views.post_detail, name='post_detail'), ]
Update
blog/views.py
:def post_detail(request, id): post = Post.objects.get(id=id) return render(request, 'blog/post_detail.html', {'post': post})
Create
blog/templates/blog/post_detail.html
:<!DOCTYPE html> <html> <head> <title>{{ post.title }}</title> </head> <body> <h1>{{ post.title }}</h1> <p>{{ post.content }}</p> <small>Posted on {{ post.created_at }}</small> <a href="{% url 'post_list' %}">Back to all posts</a> </body> </html>
Exercise 2: Add a Create Post Form
Add a view to handle post creation in
blog/views.py
:from django.shortcuts import redirect def create_post(request): if request.method == "POST": title = request.POST['title'] content = request.POST['content'] Post.objects.create(title=title, content=content) return redirect('post_list') return render(request, 'blog/create_post.html')
Add a URL in
blog/urls.py
:path('create/', views.create_post, name='create_post'),
Create
blog/templates/blog/create_post.html
:<!DOCTYPE html> <html> <head> <title>Create Post</title> </head> <body> <h1>Create a New Post</h1> <form method="POST"> {% csrf_token %} <label for="title">Title:</label> <input type="text" name="title" required><br> <label for="content">Content:</label> <textarea name="content" required></textarea><br> <button type="submit">Create Post</button> </form> <a href="{% url 'post_list' %}">Back to all posts</a> </body> </html>
5. Summary
Key Takeaways:
- Setting Up Django:
- Install Django, create a project, and run the development server.
- MVT Pattern:
- Models handle the database, views handle the logic, and templates handle the presentation.
- Building a Blog App:
- Define models, create views, configure URLs, and use templates for a simple blog application.
- Admin Interface:
- Use Django’s admin panel to manage your app’s data.
Module 16: Working with APIs
Objective: Learn how to interact with APIs using Python and create your own APIs. This module covers consuming APIs with Python’s requests
library, working with JSON data, and building APIs using Flask or Django REST Framework (DRF).
1. Introduction to REST APIs
A. What is an API?
- API (Application Programming Interface) allows applications to communicate with each other.
- A REST API (Representational State Transfer API) uses standard HTTP methods (GET, POST, PUT, DELETE) to perform actions.
B. Common HTTP Methods
Method | Description |
---|---|
GET | Retrieve data. |
POST | Send data to create resources. |
PUT | Update or replace a resource. |
DELETE | Delete a resource. |
C. JSON Format
- APIs often use JSON (JavaScript Object Notation) to transfer data.
- Example JSON:
{
"name": "John Doe",
"age": 30,
"skills": ["Python", "Flask", "Django"]
}
2. Consuming APIs with requests
A. Making a GET Request
Example
import requests
url = "https://jsonplaceholder.typicode.com/posts"
response = requests.get(url)
if response.status_code == 200:
print(response.json()) # Parse the JSON response
else:
print(f"Failed to fetch data. Status code: {response.status_code}")
B. Making a POST Request
Example
url = "https://jsonplaceholder.typicode.com/posts"
data = {
"title": "My First Post",
"body": "This is the body of the post",
"userId": 1
}
response = requests.post(url, json=data)
if response.status_code == 201: # 201 Created
print("Post created:", response.json())
else:
print(f"Failed to create post. Status code: {response.status_code}")
C. Parsing JSON Data
Example
url = "https://jsonplaceholder.typicode.com/users"
response = requests.get(url)
if response.status_code == 200:
users = response.json()
for user in users:
print(f"Name: {user['name']}, Email: {user['email']}")
3. Sending API Requests and Parsing JSON
A. Sending Headers
Some APIs require authentication using headers.
Example
url = "https://api.example.com/data"
headers = {"Authorization": "Bearer YOUR_API_KEY"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
print(response.json())
B. Handling Query Parameters
Example
url = "https://jsonplaceholder.typicode.com/comments"
params = {"postId": 1} # Query parameter
response = requests.get(url, params=params)
if response.status_code == 200:
print(response.json()) # Prints comments for post ID 1
4. Building APIs with Flask
A. Setting Up a Flask API
Install Flask:
pip install flask
Create a simple API in
app.py
:from flask import Flask, jsonify, request app = Flask(__name__) # Sample data posts = [ {"id": 1, "title": "First Post", "content": "Hello, world!"}, {"id": 2, "title": "Second Post", "content": "Flask is awesome!"} ] @app.route("/posts", methods=["GET"]) def get_posts(): return jsonify(posts) @app.route("/posts", methods=["POST"]) def create_post(): data = request.json new_post = { "id": len(posts) + 1, "title": data["title"], "content": data["content"] } posts.append(new_post) return jsonify(new_post), 201 if __name__ == "__main__": app.run(debug=True)
Run the Flask server:
python app.py
Test the API:
- GET:
http://127.0.0.1:5000/posts
- POST: Use a tool like Postman to send a POST request with JSON data.
- GET:
5. Building APIs with Django REST Framework (DRF)
A. Setting Up DRF
Install Django and DRF:
pip install django djangorestframework
Create a Django project and app:
django-admin startproject myproject cd myproject python manage.py startapp api
Add
rest_framework
andapi
toINSTALLED_APPS
inmyproject/settings.py
.
B. Creating a Model
Define a
Post
model inapi/models.py
:from django.db import models class Post(models.Model): title = models.CharField(max_length=100) content = models.TextField()
Apply migrations:
python manage.py makemigrations python manage.py migrate
C. Creating a Serializer
Serializers convert model instances into JSON format.
- Create a serializer in
api/serializers.py
:from rest_framework import serializers from .models import Post class PostSerializer(serializers.ModelSerializer): class Meta: model = Post fields = '__all__'
D. Creating API Views
- Define API views in
api/views.py
:from rest_framework.response import Response from rest_framework.decorators import api_view from .models import Post from .serializers import PostSerializer @api_view(["GET"]) def get_posts(request): posts = Post.objects.all() serializer = PostSerializer(posts, many=True) return Response(serializer.data) @api_view(["POST"]) def create_post(request): serializer = PostSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=201) return Response(serializer.errors, status=400)
E. Configuring URLs
Create
api/urls.py
:from django.urls import path from . import views urlpatterns = [ path("posts/", views.get_posts, name="get_posts"), path("posts/create/", views.create_post, name="create_post"), ]
Include the app’s URLs in
myproject/urls.py
:from django.urls import path, include urlpatterns = [ path("api/", include("api.urls")), ]
F. Testing the API
Start the server:
python manage.py runserver
Test the API:
- GET:
http://127.0.0.1:8000/api/posts/
- POST: Use Postman or a Python script to send POST requests.
- GET:
6. Practical Exercises
Exercise 1: Build a Weather App
- Use a public API like OpenWeatherMap to fetch weather data based on user input.
Exercise 2: Build a CRUD API
- Create a full CRUD API (Create, Read, Update, Delete) for managing tasks.
Exercise 3: Create a Custom API
- Build a custom API in Flask or Django REST Framework that serves specific data (e.g., a product catalog).
7. Summary
Key Takeaways:
- REST APIs:
- Use HTTP methods (
GET
,POST
, etc.) for CRUD operations. - Data is often exchanged in JSON format.
- Use HTTP methods (
- Consuming APIs:
- Use
requests
to fetch, send, and process API data.
- Use
- Building APIs:
- Use Flask for lightweight APIs.
- Use Django REST Framework for robust, scalable APIs.
Module 17: Testing in Python
Objective: Learn how to write reliable and efficient tests for Python applications using the unittest
framework, understand the role of mocking in testing, and measure test coverage to ensure comprehensive testing.
1. Writing Unit Tests with unittest
A. What is unittest
?
unittest
is Python’s built-in testing framework.- It provides tools for organizing and automating tests.
B. Basic Structure of a Unit Test
- Import
unittest
. - Create a test class that inherits from
unittest.TestCase
. - Define test methods (method names must start with
test_
). - Use assertions to validate behavior.
Example
import unittest
# Function to test
def add(a, b):
return a + b
# Test class
class TestMathOperations(unittest.TestCase):
def test_add(self):
self.assertEqual(add(2, 3), 5) # Test for correct result
self.assertEqual(add(-1, 1), 0)
def test_add_negative(self):
self.assertLess(add(-3, -2), 0) # Result should be negative
if __name__ == "__main__":
unittest.main()
C. Common Assertions
Assertion | Description |
---|---|
assertEqual(a, b) | Check if a == b . |
assertNotEqual(a, b) | Check if a != b . |
assertTrue(x) | Check if x is True . |
assertFalse(x) | Check if x is False . |
assertIn(a, b) | Check if a is in b . |
assertRaises(exception) | Check if a specific exception is raised. |
Example
def divide(a, b):
if b == 0:
raise ValueError("Cannot divide by zero")
return a / b
class TestDivide(unittest.TestCase):
def test_divide_by_zero(self):
with self.assertRaises(ValueError):
divide(5, 0)
D. Running Tests
- Save your test file (e.g.,
test_math.py
). - Run the tests:
python -m unittest test_math.py
2. Mocking in Tests
A. What is Mocking?
- Mocking is a way to replace parts of your system under test with mock objects.
- Mock objects simulate the behavior of real objects.
B. Using unittest.mock
- Import
mock
fromunittest
. - Replace real objects (e.g., functions, APIs) with mocks.
Example: Mocking a Function
from unittest.mock import MagicMock
# Function to test
def fetch_data(api_client):
return api_client.get_data()
# Test
class TestFetchData(unittest.TestCase):
def test_fetch_data(self):
mock_client = MagicMock()
mock_client.get_data.return_value = {"key": "value"} # Mocked response
result = fetch_data(mock_client)
self.assertEqual(result, {"key": "value"})
C. Mocking External APIs
Example
from unittest.mock import patch
# Function to test
def get_user_name(user_id):
import requests
response = requests.get(f"https://api.example.com/users/{user_id}")
return response.json()["name"]
# Test
class TestGetUserName(unittest.TestCase):
@patch("requests.get")
def test_get_user_name(self, mock_get):
mock_get.return_value.json.return_value = {"name": "John Doe"}
name = get_user_name(1)
self.assertEqual(name, "John Doe")
D. Mocking Objects
- Mock classes and their methods to isolate functionality.
Example: Mocking a Database Connection
class Database:
def connect(self):
return "Connected to database"
class TestDatabase(unittest.TestCase):
@patch("__main__.Database.connect")
def test_connect(self, mock_connect):
mock_connect.return_value = "Mocked Connection"
db = Database()
self.assertEqual(db.connect(), "Mocked Connection")
3. Test Coverage Tools
A. What is Test Coverage?
- Test coverage measures the percentage of your codebase tested by unit tests.
- Tools like
coverage.py
help identify untested code.
B. Installing coverage
Install coverage
:
pip install coverage
C. Measuring Test Coverage
Run your tests with coverage:
coverage run -m unittest test_math.py
Generate a coverage report:
coverage report
Generate an HTML report:
coverage html
Open the
htmlcov/index.html
file in your browser to view the detailed coverage report.
D. Ignoring Lines in Coverage
- Use
# pragma: no cover
to exclude lines from coverage.
Example
def divide(a, b):
if b == 0: # pragma: no cover
raise ValueError("Cannot divide by zero")
return a / b
4. Practical Exercises
Exercise 1: Write Unit Tests for a Calculator
Write tests for a calculator app with functions like add
, subtract
, multiply
, and divide
.
Exercise 2: Mock API Responses
Write tests for a function that fetches weather data from an external API. Mock the API to simulate different responses.
Exercise 3: Measure Test Coverage
- Write unit tests for a simple app.
- Measure test coverage using
coverage.py
. - Identify untested lines and write additional tests.
5. Summary
Key Takeaways:
- Unit Testing:
- Use
unittest
to write and organize tests. - Leverage assertions to validate expected outcomes.
- Use
- Mocking:
- Use
unittest.mock
to simulate real objects and external APIs. - Patch methods and classes to isolate functionality during testing.
- Use
- Test Coverage:
- Measure test coverage with
coverage.py
. - Use coverage reports to identify untested parts of the codebase.
- Measure test coverage with
Module 18: Data Visualization
Objective: Learn how to create advanced visualizations with Python using libraries like Seaborn and Plotly, and build interactive dashboards for data-driven storytelling.
1. Advanced Visualizations with Seaborn
A. What is Seaborn?
- Seaborn is a Python library built on top of Matplotlib, designed for statistical data visualization.
- It provides an interface for creating aesthetically pleasing and complex visualizations with minimal code.
B. Installing Seaborn
pip install seaborn
C. Creating Advanced Visualizations
1. Pair Plot
Displays pairwise relationships between features in a dataset.
Example:
import seaborn as sns
import matplotlib.pyplot as plt
# Load sample dataset
iris = sns.load_dataset("iris")
# Create a pair plot
sns.pairplot(iris, hue="species")
plt.show()
2. Heatmaps
Used to display the correlation matrix of numerical data.
Example:
import seaborn as sns
import matplotlib.pyplot as plt
# Load dataset
flights = sns.load_dataset("flights")
pivot_table = flights.pivot("month", "year", "passengers")
# Create heatmap
sns.heatmap(pivot_table, annot=True, fmt="d", cmap="coolwarm")
plt.title("Flights Heatmap")
plt.show()
3. Violin Plots
Show the distribution of data and its probability density.
Example:
sns.violinplot(x="species", y="sepal_length", data=iris, palette="muted")
plt.title("Violin Plot of Sepal Length by Species")
plt.show()
4. Regression Plots
Display linear relationships between variables.
Example:
sns.lmplot(x="sepal_length", y="petal_length", hue="species", data=iris)
plt.title("Regression Plot")
plt.show()
2. Advanced Visualizations with Plotly
A. What is Plotly?
- Plotly is a Python library for creating interactive, web-based visualizations.
- It supports a variety of charts including 3D plots, maps, and dashboards.
B. Installing Plotly
pip install plotly
C. Creating Interactive Visualizations
1. Line Chart
Example:
import plotly.graph_objects as go
# Create a line chart
fig = go.Figure(data=go.Scatter(x=[1, 2, 3, 4], y=[10, 20, 30, 40], mode="lines+markers"))
fig.update_layout(title="Line Chart Example", xaxis_title="X-axis", yaxis_title="Y-axis")
fig.show()
2. Bar Chart
Example:
import plotly.express as px
# Create bar chart
data = {"Fruit": ["Apples", "Bananas", "Cherries"], "Quantity": [10, 15, 7]}
fig = px.bar(data, x="Fruit", y="Quantity", title="Bar Chart Example")
fig.show()
3. 3D Scatter Plot
Example:
import plotly.express as px
import pandas as pd
# Create random 3D data
df = pd.DataFrame({
"x": [1, 2, 3, 4],
"y": [10, 20, 30, 40],
"z": [5, 15, 25, 35],
"label": ["A", "B", "C", "D"]
})
# Create 3D scatter plot
fig = px.scatter_3d(df, x="x", y="y", z="z", color="label", title="3D Scatter Plot Example")
fig.show()
4. Interactive Heatmap
Example:
import plotly.express as px
import numpy as np
# Generate random data
data = np.random.rand(10, 10)
# Create heatmap
fig = px.imshow(data, color_continuous_scale="Viridis", title="Interactive Heatmap Example")
fig.show()
3. Creating Interactive Dashboards
A. Using Plotly Dash
Dash is a Python framework for building interactive web applications and dashboards.
B. Installing Dash
pip install dash
C. Basic Dashboard with Dash
Create a file
app.py
:import dash from dash import dcc, html import plotly.express as px import pandas as pd # Create a Dash app app = dash.Dash(__name__) # Sample dataset df = px.data.gapminder() # Dropdown options options = [{"label": year, "value": year} for year in df["year"].unique()] # Layout app.layout = html.Div([ html.H1("Interactive Dashboard Example"), dcc.Dropdown(id="year-dropdown", options=options, value=1952), dcc.Graph(id="scatter-plot") ]) # Callback for interactivity @app.callback( dash.dependencies.Output("scatter-plot", "figure"), [dash.dependencies.Input("year-dropdown", "value")] ) def update_scatter(selected_year): filtered_df = df[df["year"] == selected_year] fig = px.scatter(filtered_df, x="gdpPercap", y="lifeExp", size="pop", color="continent", hover_name="country", title=f"Year: {selected_year}") return fig if __name__ == "__main__": app.run_server(debug=True)
Run the app:
python app.py
Open
http://127.0.0.1:8050
in your browser to view the dashboard.
D. Adding Multiple Components
Extend the dashboard with additional plots, filters, and interactivity.
Example: Line Chart
Add a line chart for GDP over time:
dcc.Graph(
id="line-chart",
figure=px.line(filtered_df, x="year", y="gdpPercap", title="GDP Over Time")
)
4. Practical Exercises
Exercise 1: Create a Seaborn Dashboard
- Use Seaborn to create a multi-panel grid showing distributions of variables for different categories.
Exercise 2: Build an Interactive Dashboard
- Use Dash to build a dashboard with:
- Dropdowns for filtering data.
- Interactive scatter and bar charts.
- A heatmap for showing correlations.
Exercise 3: Use Real API Data
- Fetch real-time weather data from an API and visualize it with Plotly.
5. Summary
Key Takeaways:
- Seaborn:
- Ideal for creating static, statistically-driven plots.
- Supports complex visualizations like pair plots and heatmaps.
- Plotly:
- Best for interactive, web-based visualizations.
- Offers advanced plots like 3D scatter plots and interactive heatmaps.
- Dash:
- A framework for building interactive dashboards.
- Combine components (graphs, dropdowns, sliders) for dynamic web apps.
Module 19: Machine Learning Basics
Objective: Gain foundational knowledge in machine learning using scikit-learn. Learn how to build and evaluate your first ML models for regression and classification tasks.
1. Introduction to Machine Learning
A. What is Machine Learning?
Machine learning (ML) involves training algorithms to learn patterns in data and make predictions or decisions without being explicitly programmed.
B. Types of Machine Learning
- Supervised Learning:
- The algorithm learns from labeled data.
- Examples: Regression, Classification.
- Unsupervised Learning:
- The algorithm learns patterns from unlabeled data.
- Examples: Clustering, Dimensionality Reduction.
- Reinforcement Learning:
- The algorithm learns by interacting with the environment and receiving rewards or penalties.
2. Setting Up scikit-learn
A. Installing Required Libraries
pip install scikit-learn pandas numpy matplotlib
B. Importing Key Libraries
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error
3. Regression with scikit-learn
A. What is Regression?
Regression predicts a continuous value (e.g., house prices, stock prices).
B. Building a Simple Regression Model
Dataset: Use a sample dataset from scikit-learn.
from sklearn.datasets import load_diabetes # Load dataset data = load_diabetes() X = data.data # Features y = data.target # Target
Splitting the Dataset:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Training a Linear Regression Model:
from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, y_train)
Making Predictions:
y_pred = model.predict(X_test)
Evaluating the Model:
mse = mean_squared_error(y_test, y_pred) print(f"Mean Squared Error: {mse}")
C. Visualizing Regression Results
import matplotlib.pyplot as plt
plt.scatter(y_test, y_pred)
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.title("Actual vs Predicted")
plt.show()
4. Classification with scikit-learn
A. What is Classification?
Classification predicts discrete categories (e.g., spam vs. not spam, disease vs. no disease).
B. Building a Simple Classification Model
Dataset: Use the Iris dataset.
from sklearn.datasets import load_iris # Load dataset data = load_iris() X = data.data # Features y = data.target # Target
Splitting the Dataset:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Training a Logistic Regression Model:
from sklearn.linear_model import LogisticRegression model = LogisticRegression(max_iter=200) model.fit(X_train, y_train)
Making Predictions:
y_pred = model.predict(X_test)
Evaluating the Model:
accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy}")
C. Visualizing Classification Results
from sklearn.metrics import ConfusionMatrixDisplay
ConfusionMatrixDisplay.from_estimator(model, X_test, y_test)
plt.title("Confusion Matrix")
plt.show()
5. Training, Testing, and Evaluating Models
A. Training and Testing
Why Split Data?
- To prevent overfitting and ensure the model generalizes to new data.
- Use
train_test_split
to divide data into training and testing sets.
Example:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
B. Cross-Validation
What is Cross-Validation?
- A technique to evaluate a model’s performance by splitting the data into k subsets and training/testing the model on different combinations.
Example:
from sklearn.model_selection import cross_val_score scores = cross_val_score(model, X, y, cv=5) print(f"Cross-Validation Scores: {scores}") print(f"Mean Score: {scores.mean()}")
C. Hyperparameter Tuning
Grid Search:
from sklearn.model_selection import GridSearchCV param_grid = {'C': [0.1, 1, 10], 'solver': ['liblinear']} grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5) grid_search.fit(X_train, y_train) print(f"Best Parameters: {grid_search.best_params_}") print(f"Best Score: {grid_search.best_score_}")
Random Search (Faster alternative):
from sklearn.model_selection import RandomizedSearchCV random_search = RandomizedSearchCV(LogisticRegression(), param_grid, cv=5, n_iter=5) random_search.fit(X_train, y_train) print(f"Best Parameters: {random_search.best_params_}")
6. Practical Exercises
Exercise 1: Predict House Prices
- Use the Boston Housing dataset to build a regression model and predict house prices.
- Evaluate the model using RMSE (Root Mean Squared Error).
Exercise 2: Classify Emails
- Use the Email Spam dataset to build a classification model.
- Evaluate the model using accuracy and confusion matrix.
Exercise 3: Hyperparameter Tuning
- Perform hyperparameter tuning on a Support Vector Machine (SVM) classifier using GridSearchCV.
7. Summary
Key Takeaways:
- Regression:
- Use models like Linear Regression for predicting continuous values.
- Evaluate using metrics like Mean Squared Error (MSE).
- Classification:
- Use models like Logistic Regression for predicting categories.
- Evaluate using accuracy, confusion matrix, and cross-validation.
- Model Evaluation:
- Split data into training and testing sets.
- Use cross-validation for robust evaluation.
- Hyperparameter Tuning:
- Use Grid Search or Random Search to optimize model performance.
Module 20: Building a Real-World Application
Objective: Develop a complete, real-world application to consolidate your knowledge. In this module, we’ll build a Data Analysis Dashboard that loads, processes, visualizes data, and provides an interactive user interface for exploring insights.
Project Overview: Data Analysis Dashboard
Objective:
Build a dashboard to analyze and visualize data interactively. The application will:
- Load a dataset (e.g., a CSV file).
- Perform basic data analysis (summaries, statistics).
- Display interactive visualizations (charts, tables).
Technology Stack:
- Backend: Flask (or Django if preferred).
- Frontend: Plotly Dash for interactivity and visualization.
- Data Processing: Pandas and NumPy.
1. Setting Up the Project
A. Create a Virtual Environment
python -m venv venv
source venv/bin/activate # Linux/Mac
venv\Scripts\activate # Windows
B. Install Required Libraries
pip install pandas numpy dash plotly flask
2. Loading and Processing Data
A. Sample Dataset
Use a public dataset (e.g., Titanic dataset, Sales data, or any dataset of your choice). For this example, let’s use a Sales Data CSV file.
Sample CSV Content:
Date,Product,Region,Sales
2023-01-01,Product A,North,100
2023-01-01,Product B,South,150
2023-01-02,Product A,North,200
2023-01-02,Product B,South,250
B. Code for Loading Data
Create a Python script (app.py
) to load and process the data.
import pandas as pd
# Load the dataset
def load_data():
data = pd.read_csv("sales_data.csv")
return data
# Summary statistics
def get_summary(data):
return data.describe()
3. Building the Dashboard with Dash
A. Basic Layout
Create a Dash app with components for file upload, data display, and visualizations.
Code: Basic App Layout
from dash import Dash, dcc, html, Input, Output
import plotly.express as px
import pandas as pd
# Initialize Dash app
app = Dash(__name__)
app.title = "Data Analysis Dashboard"
# Load initial dataset
data = pd.read_csv("sales_data.csv")
# App Layout
app.layout = html.Div([
html.H1("Data Analysis Dashboard", style={"textAlign": "center"}),
# Dropdown to filter data by product
html.Label("Select Product:"),
dcc.Dropdown(
id="product-dropdown",
options=[{"label": product, "value": product} for product in data["Product"].unique()],
value=data["Product"].unique()[0]
),
# Graph output
dcc.Graph(id="sales-graph"),
# Table output
html.Label("Data Table:"),
html.Div(id="data-table")
])
B. Adding Interactivity
Callback for Graph Updates
@app.callback(
Output("sales-graph", "figure"),
Input("product-dropdown", "value")
)
def update_graph(selected_product):
filtered_data = data[data["Product"] == selected_product]
fig = px.bar(filtered_data, x="Date", y="Sales", title=f"Sales of {selected_product} Over Time")
return fig
Callback for Table Updates
@app.callback(
Output("data-table", "children"),
Input("product-dropdown", "value")
)
def update_table(selected_product):
filtered_data = data[data["Product"] == selected_product]
return html.Table([
html.Tr([html.Th(col) for col in filtered_data.columns]) # Header row
] + [
html.Tr([html.Td(filtered_data.iloc[i][col]) for col in filtered_data.columns]) for i in range(len(filtered_data))
])
C. Run the App
Add the following to run the app:
if __name__ == "__main__":
app.run_server(debug=True)
Run the script and open http://127.0.0.1:8050
in your browser.
4. Enhancing the Dashboard
A. Add Advanced Filters
- Filter by Region.
- Filter by a Date Range.
Example: Date Range Filter
dcc.DatePickerRange(
id="date-picker",
start_date=data["Date"].min(),
end_date=data["Date"].max()
)
B. Add More Visualizations
- Pie Chart: Sales distribution by region.
fig = px.pie(data, names="Region", values="Sales", title="Sales by Region")
- Scatter Plot: Sales trend across regions.
fig = px.scatter(data, x="Date", y="Sales", color="Region", title="Sales Trend by Region")
C. Add Download Options
Allow users to download filtered data as a CSV file.
Example:
from dash import dcc
dcc.Download(id="download-dataframe-csv"),
@app.callback(
Output("download-dataframe-csv", "data"),
Input("download-button", "n_clicks"),
prevent_initial_call=True
)
def download_filtered_data(n_clicks):
filtered_data = data[data["Product"] == selected_product]
return dcc.send_data_frame(filtered_data.to_csv, "filtered_data.csv")
D. Deploying the Dashboard
Deploy the app to a cloud platform like Heroku or Render.
Install gunicorn:
pip install gunicorn
Create a
Procfile
:web: gunicorn app:server
Deploy to Heroku:
heroku create git push heroku main
5. Practical Exercises
Exercise 1: Enhance the Dashboard
- Add filters for multiple columns (e.g., Region, Product).
- Add a summary section with total sales, average sales, etc.
Exercise 2: Use Real-World Data
- Fetch real-time stock data using an API and visualize price trends.
Exercise 3: Build a Custom Dashboard
- Use a dataset of your choice (e.g., e-commerce, healthcare) to build a dashboard with insights.
6. Summary
Key Takeaways:
- Data Processing:
- Use Pandas to load and manipulate datasets.
- Interactive Visualizations:
- Use Plotly Dash for dynamic, web-based visualizations.
- Dashboard Development:
- Combine filtering, graphing, and table views for a comprehensive app.